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In this work we analyze the behavior of a nonlinear dynamical system using a probabilis-
tic approach. We focus on the coexistence of solutions and we check how the changes
in the parameters of excitation influence the dynamics of the system. For the demon-
stration we use the Duffing oscillator with the tuned mass absorber. We mention the
numerous attractors present in such a system and describe how they were found with
the method based on the basin stability concept.
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1. Introduction

The engineers aim to design the robust and predictable systems. At the same
time they constantly struggle to increase their performance, which leads to the
more complex designs. Some of them are strongly nonlinear and this fact makes
them difficult to analyze. In particular, there are the nonlinear systems that are
multistable, which means that they can exhibit the qualitatively different behaviors
depending on the working conditions [1]. For example the Duffing oscillator, that is
used to model many real mechanisms, can be multistable in certain conditions, as it
is shown numerically in the aforementioned article. The multistability is not only a
matter of the unrealistic computations. A recent research experimentally proved its
existence in the system composed of two pendulums [3]. In fact, the phenomenon
is widely present in nature, which makes it interesting not only for the mechanical
engineers [6,7,9]. Sometimes we encounter a special case of the multistability, when
some of the coexisting attractors are very unlikely to occur [5]. Such attractors
have the relatively small basins of attraction and therefore they are hard to find in
the phase space. The issue becomes even worse when we consider the uncertainty
of the parameters describing the system.
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Generally, there are no means to solve the complex dynamical systems analyti-
cally so we reach for the numerical methods. It turns out that some of the methods,
such as the bifurcational analysis based on the path following algorithm, are likely
to overlook the non-dominant attractors [2, 4]. Even though the small basins of
attraction make these solutions hard to observe in practice, the designer should be
aware of their existence. A machine that is not completely predictable would not be
acceptable in many applications. In this work we show how to apply the extended
basin stability method [3, 8] to track the attractors in the forced duffing oscillator
with a tuned mass absorber. The uncertainty of the forcing parameters is taken
into account.

2. Model of the System

The analyzed system is shown in Fig. 1. It consists of a Duffing oscillator with
a suspended pendulum. The Duffing system is forced by a periodic excitation

F (t) = F0 cos νt.

The position of the mass M is given by the coordinate y and the angular dis-
placement of the pendulum (position of the mass m) is given by the angle ϕ. l is the
length of the pendulum, k1 and k2 are linear and non–linear parts of spring stiffness
and c1 is a viscous damping coefficient of the Duffing oscillator. We assume that
the pendulum is subjected to a small viscous damping c2 (1% of critical damping),
with the damper located in the pivot of the pendulum (not shown in Fig. 1).

One can derive two coupled second order differential equations:

(M +m)ÿ −mlϕ̈ sinϕ−mlϕ̇2 cosϕ+ k1y + k2y
3 + c1ẏ = F0 cos νt, (1)

ml2ϕ̈−mlÿ sinϕ+mlg sinϕ+ c2ϕ̇ = 0. (2)

In the numerical calculations we use the following values of parameters:

Figure 1 Model of system
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M = 5.0 [kg], k1 = 162.0
[
N
m

]
, k2 = 502.0

[
N
m

]
, c1 = 3.9

[
Ns
m

]
,

m = 0.5 [kg], l = 0.1 [m], c2 = 0.001 [Nms].

We neglect the static deflection of mass M .

Introducing dimensionless time τ = tω1, where ω2
1 = k1

M+m is the natural linear
frequency of Duffing oscillator, we obtain the dimensionless equations:

ẍ− abγ̈ sin γ − abγ̇2 cos γ + x+ αx3 + d1ẋ = f cosµτ,

γ̈ − 1
b ẍ sin γ + sin γ + d2γ̇ = 0,

(3)

where

a = m
M+m , b =

(
ω2

ω1

)2

, ω2
2 = g

l , α = k2l
2

(M+m)ω2
1
,

f = F0

(M+m)lω2
1
, d1 = c1

(M+m)ω1
, d2 = c2

ml2ω2
, µ = ν

ω1
,

x = y
l , ẋ = ẏ

ω1l
, ẍ = ÿ

ω2
1l

, γ = ϕ, γ̇ = ϕ̇
ω2
, γ̈ = ϕ̈

ω2
2
.

The dimensionless parameters of the system have the following values:

a = 0.091, b = 3.33, α = 0.031, d1 = 0.132 and d2 = 0.02.

The dimensionless amplitude f and frequency µ of the excitation are taken as control
parameters. Basing on the model from [4] we assume that they can take any values
from the ranges f ∈ (0, 2.5), µ ∈ (0, 3) with the equal probability.

3. Sample Based Detection

In this approach we draw the conclusions about the dynamics of the system ana-
lyzing its behavior for a finite number of initial conditions and values of control
parameters. First, we choose a random point from the accessible phase space, take
the random values of the bifurcation parameters from the ranges assumed at the
beginning and solve the equations of motion for these values. Then we asses which
kind of attractor is represented by the solution obtained. The procedure is repeated
multiple times and at the end we try to infer about all the possible solutions basing
on the limited number of observations, which is a typical statistical task.

Figure 2 (a) Location of the attractor detected in the parameters plane thanks to the sample
based method. The more frequently the attractor appeared in a given region, the darker the region
is. (b) Time series characterizing the attractor. Lines plotted for µ = 2, f = 1, x0 = 0, γ0 = 1, ẋ0 =
0, γ̇0 = 0. The bifurcation lines in the background are taken from [4]
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The method is closely related to the concept of basin stability [8]. If a dynamical
system is multistable, its phase space is divided into subspaces such that starting
from one of the subspaces results in achieving only one kind of attractor. Such
a subspace is called the basin of attraction and its size is measured by its volume in
the phase space. This means that if a basin of attraction occupies 40% of the phase
space and if we randomly choose the points from this phase space, around 40% of
the points should belong to this basin and as a result lead to one kind of solution.

Let us take an example from the system presented above. It has four state
variables, two bifurcation parameters and therefore six numbers to draw randomly
for the simulation. Let us draw 400 000 sets of the six numbers and solve the
equations of motion for each set. The number above is an arbitrary large that we
judge big enough to well describe the system. In our simulation it turned out that
13% of solutions have common features which indicate that the pendulum swings
periodically, performing one movement back and forth per two periods of excitation
(Fig. 2(b)). Having the results, we can plot the points with these features on the
parameters plane as we show in Fig. 2(a). The plot shows us for which values of
parameters the solution can occur and how often. We can see that the shape formed
by the points corresponds closely to the bifurcation lines present in the background.
The lines were obtained by the path following method and were first presented in [4].
The approach used by Brzeski et al. in this publication was suitable for finding the
dominant attractors and the fact that our result is in agreement with theirs is the
first indication that the sample based method works correctly.

Figure 3 Location of all the rare attractors detected in the parameters plane thanks to the sample
based method

We aim here to stress that the method is also suitable for finding the rare
attractors hidden in the phase space. Their basins of attraction occupy relatively
small volume of the phase space and therefore they are hard to detect. We decided
to label an attractor as rare if its probability of occurrence is smaller than 0.5%.
Please note that the notion of being rare is relative and depends on the admissible
range of parameters and initial conditions. If for example the range of the parameter
µ was restricted from µ ∈ (0, 3) to µ ∈ (1, 2.5), the probability of occurrence of the
attractor presented in Fig. 2 would be much higher. Figure 3 shows the distribution
of all the rare attractors we were able to detect over the parameters plane. We can
see that they are present in many places of the plane and that sometimes they are
correlated with the bifurcation lines, but not always.
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Figure 4 (a) Location of an exemplary rare periodic attractor in the parameters space. (b) Time
series characterizing the attractor. One period of excitation corresponds to one period of the
pendulum. Lines plotted for µ = 1, f = 0.3, x0 = −0.9, γ0 = 1.6, ẋ0 = 1.5, γ̇0 = 0.5. (c) Location
of an exemplary rare chaotic attractor in the parameters plane. (d) Time series characterizing the
attractor. The pendulum rotates in both directions and occasionally oscillates, which indicates
the tumbling chaos. Lines plotted for µ = 1.9727, f = 2.0275, x0 = 0.2432, γ0 = −1.4665,
ẋ0 = 1.4367, γ̇0 = −0.2539

Periodic attractors

Period Behavior of pendulum Probability

1 1 Hangs down 64.21%

2 2 One period of oscillation 13.60%

3 2 One rotation clockwise and one counterclockwise 6.56%

4 1 Three rotations 2.46%

5 1 One rotation 1.32%

6 1 One period of oscillation 0.52%

7 4 One period of oscillation 0.38%

8 2 Six rotations 0.27%

9 8 Four rotations clockwise and four counterclockwise 0.12%

10 10 Ten oscillations of unequal amplitude 0.11%

- - All other periodic solutions (154) 0.78%

Table 1 Summary of the detected periodic attractors

The attractors we found are of different nature, from periodic, as the one pre-
sented in Fig. 4 to chaotic, with the example shown in Fig. 4 (c). The time
series presented in Figure 4(d) suggests a presence of so called tumbling chaos [10],
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the situation in which the pendulum rotates unpredictably in both directions and
occasionally oscillates around the equilibrium position.

Table 1 shows a summary of the detected periodic attractors that constitute 90.33%
of all the solutions. The column Period tells how many periods of excitation the
system needs before it returns to the departure point in the phase space. Next one
contains a short description of the attractor, while the last one, Probability, reflects
the frequency of occurrence of the given solution in our simulation. It does not sum
up to 100% because the rest (9.67%) is aperiodic and therefore difficult to classify.

4. Conclusions

In the article we presented a sample based approach for identifying the attractors
of the dynamical systems. With our method we were able to find 164 different
periodic attractors in the system composed of the Duffing oscillator and a tuned
mass absorber. The extended basin stability method, shown in this work, can be
applied to the systems with any number of degrees of freedom. Moreover, it captures
the influence of the variations of the system parameters on the dynamics of the
system. Basing on the samples we can also estimate the probability of occurrence
of each attractor in case of the multistable zones. All these features make the
approach an interesting tool for the dynamical analysis.
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